Mini Mac on Twitter

I was very excited to see Susan Kare borrow of of the mini Macs from a friend and give it a shout out on Twitter! These kind words from someone responsible for a lot of the original Macintosh design are quite humbling.🙂

Mini Mac

Building a Tiny Classic Mac Part 3 – OS and Software

In building the project I wanted the computer to have the closest to the original feel as I could get. There were a few difficulties in the project, from the TFT screen, to the OS configuration. Yet in the end, I got a cute little replica running on top of a Raspberry Pi. I am not trying to break copyright, or profit from this. I simply do it as a fan of good hardware and past operating systems.

To start I want to mention that there are areas of this “guide” where I have been short, if you are unfamiliar with Linux, some of the parts in this config may give you problems. This project includes compiling code, adding scripts to boot, and configuring systems like VNC.

I loaded the standard Debian install onto a SD card to start (which at the time was Debian 6 or 7), then I started investigating the different original Motorola Mac emulators. The two main ones I found were Basilisk II and Mini vMac. Basilisk offers features such as Color, networking, and advanced features over Mini vMac. A very useful feature that Basilisk has is supporting a shared drive. You can tell the emulator that a folder on your Pi or any PC should show up as a hard drive in Mac OS 7. That way you can easily download games/software from or other locations, then load it onto the virtual system!

Mini vMac did offer greater compatibility for apps, while only being black and white, it seems to do a much deeper level of emulation; this makes it slower, but some apps that wont work on Basilisk will work on it. My solution in the end was to put both of the emulators on the box, pointing to the same virtual hard drive.

A script wraps the system, by default it auto boots into Basilisk, but if you “shutdown” the Mac in the emulator, you get a options screen that will allow you to switch modes the emulator is running in, the emulator itself, or some other settings. Some of the other settings including pairing Bluetooth, shutting down, or dropping to the console.

These files are available under There is a SYSINIT script that starts the script, aka the wrapper, and gets the session started under the “pi” user, this goes in the /etc/init.d folder. Then there are folders for the different emulators in the /opt/mac folder.

Note: I used the current Raspberry Pi Debian build when I did this project, which at the time was using SYSINIT over the newer SystemD. If you want to use a newer build (which you probably should) you will have to translate my crummy SYSINIT script into a SystemD script. Feel free to pull request the repo!🙂

One of the larger issues that had to be overcome was screen scaling. The screen I used is 480×320, but the original Macintosh resolution was 512 × 342. This had some of the emulators either cut off, or scrolling around the screen when the mouse got to a corner, which was not great. I could run the emulators at a smaller resolution, but some software was designed with that screen in mind and applications were cut off!

My solution was to use VNC, the system starts the emulator in a VNC session running at the native resolution, then the Pi screen connects to that session and enables scaling mode, shrinking it to the proper size. This way VNC worries about all the scaling, at a minor speed loss. I looked at different X configs to try to do the scaling that way, but the way this screen works, it gets upset and has problems very easily. The screen does not have a scaler of any sort, so you HAVE to send that resolution of 480×320 to it. The VNC solution works well. The different emulators have VNC config files that are copied to the running config right before its run depending on the emulators properties.

At this point we should discuss dependencies; TightVNC server was used for VNC. A quick minor note about VNC, you need to config the VNC users password, and then setup the script to auto-login with that password for the above script to work. Bluez Bluetooth stack and utils were used to be able so use Bluetooth peripherals. Basilisk and Mini vMac were compiled from source on the Pi 2 so that I could squeeze the most performance out of the little PC. Also its hard to find the latest versions ARM compiled online.

Basilisk II:

Basilisk has a good make file that you can use on the Pi as long as you have standard development environment setup,

Mini vMac:

The authors website offers a nice little service to have the website compile to code for you, or you can compile it yourself. Depending on your screen and how you want the app to start (a lot of those settings are hard coded in at compile time)

I made one virtual hard drive, that both emulators used. Luckily they use a compatible hard drive image format. I set the first image up on my desktop just because it was easier. Then copied it over once I got the image in a good state. For years Apple gave out for free on their website Mac OS 7.5.3, then after a website update it seem to break a lot of the links. A few still worked but most over the years have stopped working. A lot of different sites have mirrors of those disks available though, if you search “System_7.5.3_01of19.smi.bin”, that should bring you to one of the mirrors. The one other thing you need is a ROM for a original Macintosh. I have some classic Macs at home, and you can dump the ROM from those. Or there are sites out there that have them hosted, I would guess that would not be to hard to find.

I put the virtual hard drive, and the ROM in a folder called “Shared” in the /opt/mac directory. You may have to tweak some of the configs/scripts to get everything working your way.

Once you get it working, there are a ton of games and pieces of software on for the old Macintosh, just make sure you get the 680*0 versions not the PowerPC versions. There are also a ton of abandonware sites, since half the companies that made this software are out of business, I doubt they will mind you taking a look, though legally its a grey area.

Those are the basics for how I got the system setup. One item that gave me a bunch of problems was the TFT screen. At the time you needed to load separate kernel modules and configure boot parameters for it. I think newer kernel images have added this, so that should be a simpler task for everyone.


Installing HipChat 4 on Fedora/Rhel/CentOS/el 7

HipChat 4 has recently come out, and then shortly after it was released to my companies internal HipChat server. Being a Linux user I hoped that the aged HipChat 2 client was finally updated for Fedora or Red Hat or CentOS 7 so I could just use yum to install it. When I went to the download page the old yum instructions were replaced by only Ubuntu/Debian instructions! After playing around with the Debian package and getting it to load, I thought I would look at the repo a little more. Low and behold, Atlassian is making a yum repo! Just not publishing instructions on how to use it! The downside is they seem to not be signing the repo, but the code below works with yum to download the latest version.


sudo bash -c ‘cat > /etc/yum.repos.d/hipchat.repo << EOF_hipchat
name=Atlassian Hipchat

sudo yum update

sudo yum install hipchat4


Building a Tiny Classic Mac Part 2 – Hardware and Wiring

The units themselves are laser cut acrylic. The front face that was put on the painted units was 3D printed. The designs for those pieces are on my GitHub page, . The original design was a tad bit smaller than the final unit. I ended up making it exactly about 1/3 scale, then realizing that there was not a screen on the market to do what I wanted to do. When I moved up to the 4″ screen, the resolution went up to a incredible 480×320. There were a bunch of issues around that resolution that I will get into in a later article.

For the Raspberry Pi I used a Raspberry Pi 2. The first version I made had a Pi 1 in it, and I ended up upgrading to the 2 just for the speed and added cores. With the system running a emulator, core 1 can get used up by that; having more available made sure things like SSH didnt lock up.

I designed two brackets, one set that holds the screen in place, and another that mounts the Pi to the inside of the case. The screen mounts are just two bars that are the exact with of the screen and help mount it inside, while leaving the port available for the IDE cable. The mount for the Raspberry Pi made it easier to take the Pi in and out of the case when building the unit. And a nice list so the Pi doesn’t get glued or screwed right into the side of the case.


For the front USB port, I got a USB 3.0, 6 inch cable. The most important part of this cable is finding one with a 90 turn at the end that does not stick out a lot. The Raspberry Pi is mounted in the end to the side wall of the case, and there is not much clearance. A USB cable that comes out from the top of the Pi is better as well. I ordered the wrong one for this last build, and then had to bend it a bit so it wouldn’t push against the side of the case.


A simple micro-usb extension cable was used for powering the Pi. The female jack goes to the back of the case, so that the unit can be powered. Again, the 90 degree male plug was important because that side sits right next to the screen. Audio was a random 90 degree 3.5mm extension cable off amazon. The first unit, the clear one, had a different make than ones i got later. Some of the later units had a splitter instead of a single extension. The original idea was to have a speaker inside for the start up sound. That quickly added to the complexity and was cut from the final project.

The networking port was important so that I could easily add new programs to it. The systems also had a tiny wifi receiver, but I figured hard wiring was also easy. That was a custom keystone jack to a RJ45 port.

I mentioned in Part 1 that the screen was connected to the Pi via a IDE extension cable. After looking around for other solutions that worked cleanly, this was the best one. The cable can handle the frequencies, and was easy to find. It also doesn’t do any flipping of pins or roll-over shenanigans.

To bring it all together, super glue was used, not the most glamorous, but strong and holds. I made a few little tools to help me try to put better right angles together when gluing the cases. Those didnt always work out great.


To wrap up, I will go over my build order, just in case anyone decides to try to make one of their own. I would first get the front piece, and glue that to the side walls. Let that dry for a few hours at least, superglue likes to dry fairly fast, but I wanted it to be solid through and through. Then I would add the bottom front panel area, and the sliver that goes between the front bottom, and that bottom panel. After I put the bottom of the unit on, I would stop working on the main body. Now its time to get the screen, with it powered on and working with the Pi, line it up to where it looks good in the cut out.

After I have found the spot the screen should go, put the brackets on it, and glue it into place. This has to be a little carefully done, any spare glue that drips into the screen can make it look bad. Once the screen has dried, getting the mounting arms for the Pi bracket, and gluing them in place was done. There is not a real science to where it went, I would put the whole Pi sled in, then see where it seemed to work well with all the cables attached. Then sharpie those spots and glue the arms down, watching them long enough to make sure they didnt fall over. Once that was done, and I felt good about where the Pi was, I would glue two tiny blocks I 3D printed to hold the Pi sled in place.

Gluing the front USB isnt too bad, its putting it in position then gluing the edge of the extender into the place it should sit. The hardest part is not getting glue in the connector, and doing multiple layers so that it doesnt move with normal user use.

Getting the back to stay in place was my least favorite part. There are little L brackets I 3D printed that the back could screw into. They work well but lining them up and gluing them into place, and not the back itself was tiring. I would tighten the brackets a fair amount to the back plate, then get the plate into position and glue the bottom two brackets into place. Then I would do the top two. At this point gluing the different connectors into the back ports isn’t too bad. I also made brackets for them, the brackets are bigger than the whole so that it covers the whole port when the piece is in it. These brackets weren’t held with little arms like the Pi, just glued into place.

Finally the top was glued in, and then the last little top slant area. The screen I mentioned getting before may not be available from Amazon, but there are a ton of others that are all seem to be made by the same place, then had another brand stamped on them. For the last build I did, I grabbed another brand (link) and it worked with the same drivers out of the box.

Building a Tiny Classic Mac Part 1

I saw online someone who made a tiny Mac (The Verge) and thought it looked like a neat project to attempt. I started by selecting the original Macintosh as the template I wanted to emulate. Macintosh-HelloSeveral people had made 3D models of the original Macintosh over on, I used a combination of those and other sources online including photos to make a cleaned up model for myself in Sketchup. After having that model I went about breaking down how I would make it.

I recently have been using laser cutters for fun at TechShop, so I made the body of the machine out of clear acrylic. Then 3D printed a face plate that was glued onto the acrylic case. After that, it was painted with several coats of spray paint. I left the back door off so that I could work on installing the electronics, and setting up the software. That will be another article later.

The first unit I made was for myself, then two more for friends; the original one never got painted, I thought the clear body was neat and showed off the internals. It also gave me a good model to hold when working with the opaque other units.

Clear Mini Mac

Mini Mac v1

Each unit had a little screen that connected to a Raspberry Pi via a ribbon cable. Then a USB port in the front where the old unit had a keyboard port. The back had a ethernet port for updating the system itself, audio out, and micro-USB port for power. One of the hardest parts of the project was finding a ribbon cable that could handle the frequencies and work between the screen and the Raspberry Pi. A lot of the GPIO ribbon cables online actually flip what wire is in the 1 position with its neighbor; my solution was a 6 inch IDE extension cable. The cable can handle high frequencies, as well as fit the pin out perfectly.


Example Painted Side

After testing several different color paints, I ended up using Rost-Oleum Ivory Bisque semi-gloss as the beige shade. All the sides were glued together except the back, The back was held on by tiny brackets that were 3D printed and then screwed into. This allows access to the inside without breaking glue somewhere. Originally I was going to attempt to put a little handle on it, but that increased the complexity; in the end the top is flat.

All the laser cutting and 3D files I used I tracked with Git over at . I will put a few photos of the clear unit below, and of the final unit. Then later post another article about the electronics, and software to run it. There are also photos of the many many attempts at different sized bodies and painting side panels. My original model was almost exactly 1/3rd scale. Then I had to make it a tiny bit bigger because of the screen I used.

Standard disclaimer that I do not own or hold any rights for the Macintosh name, or Apple logo. I do this as a fan for fun.


  • Screen, JBtek® Latest Version 4 ” inch IPS Display (Super TFT) 480×320, (Amazon)
  • Screen Cable, IDE Extension Cable, (Amazon)
  • Audio Cable, 3.5mm right angle cable (Amazon)
  • USB Extension cable, with 90 degree plug so that it fits in the case (Amazon)
  • Micro USB extension for power, with 90 degree head (Amazon)
  • For ethernet I made my own cable, it had a RJ45 head and a RJ45 keystone for the back


Fixing CentOS 6.6 Kickstart Issues

I recently have been working on a system automating CentOS 6 installs for servers. When upgrading to 6.6 my test environment (VMWare Fusion) stopped working. I got a hard kernel panic and halt on loading. Now VMware forums and CentOS site, have posts about work arounds for this. A bunch of them are complex and involve changing modules around, and other files. There is a very easy fix for this, and its detailed below.

NOTE: I am running VMware Fusion, so I will open a package, in Windows and Linux you dont have to do this, just go to the folder.

  1. Stop the VM
  2. Find the VM files
    1. For Fusion there will be a %Your VM%.vmwarevm file, you have to right click that and “Show package contents”
  3. There should be a %Your VM%.vmx file, open that with a text editor
    1. If you are on a Mac, or other machine that likes to do smart quotes, make sure to use a program like vim or Sublime Text that doest add “smart quotes”
  4. A line will read: ethernet0.virtualDev = “e1000e”, change that to ethernet0.virtualDev = “e1000”, just remove the last e. This changes the card from a E1000 in enhanced mode to a normal one. Now CentOS 6.6 will boot.

Here are some place people have discussed issues:

3D Printing Hard Drive Caddies

Sometimes terrible things happen, like when a laptop goes a place where they take the hard drive as it leaves. Then they keep the hard drive bracket because they forgot to take it off! You can get a new drive for ~$50 but where do you get these priceless holders? Well I ran into this situation and decided to 3D print one! Now all IT departments have a real reason to get a 3D printer!

I started a repo at, and the first laptop I added is a Dell Inspiron N7010, random but it works!

Hard Drive Caddy

Hard Drive Caddy